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Abstract.—We outline component features of the captive environment and the natural world that 
should be considered when designing a program for head-starting and releasing amphibians, 
presumably as part of a conservation project. The main points indicate the importance of accounting 
for features of the basic biology of amphibian larvae, the biology of the focal species, and highlight 
the types of error risks based on generalities, human convenience, and logistical limitations. 
Similarly, we urge consideration and evaluation of the quality of the metamorphs that are produced 
over the sheer quantity produced and released. While most of the examples are taken from pond-
breeding species, the general principles are relevant, and details may be modified to fit amphibian 
species with larvae in other habitats.
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Captive rearing of endangered frogs is a large, expensive 
(Mattioli et al. 2006), and time-consuming component 
of conservation efforts. We discuss a number of factors 
intended to improve the chances of successful rearing 
and release of captive individuals (McGregor and Zip-
pel 2008). Central themes are 1) acceptance that captive-
reared animals differ in a number of ways from those 
from natural populations (e.g., Griffiths and Pavajeau 
2008; Gawor et al. 2012); 2) rearing protocols must ad-
dress the specific biology of each species (e.g., Morrison 
and Hero 2003); 3) avoidance or reduction of activities 
that cater only to our conveniences; and 4) evaluation of 
criteria to judge success based on metrics other than just 
numbers released. We emphasize the need for long-term 
monitoring of the success of the releases. Most sugges-
tions center around testing, improving, and standardizing 

species-specific procedures once those that produce in-
dividuals of the highest probable fitness are verified, not 
just the most individuals. Tadpole mortality varies across 
experimental venues (Melvin and Houlahan 2012), so 
survival and fitness likely vary according to husbandry 
regime, release protocols, and even captive breeding it-
self.

We argue that each taxon-specific system should di-
rectly address several types of questions. Do artificial 
environments and particularly the food sources used in 
captive programs alter reared froglets relative to what 
wild individuals experience (i.e., rapid acclimation to 
captivity of Griffiths and Pavajeau 2008)? Do these al-
terations adversely manifest themselves in the survival 
and fitness of 1) the released animals; 2) the popula-
tion in which the animals are released; or 3) the meta-
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populations with which they interact? The real question 
is: do the introductions contribute in a beneficial way to 
conservation, or is there the appearance of conservation 
(through numbers) when actions actually degrade the fit-
ness of the population (e.g., via artificial selection)? How 
do the morphological, immunological (Venesky et al. 
2012), and hematological (Davis and Maerz 2011; Davis 
2012) conditions of reared froglets compare to those of 
wild individuals? For example, Burns et al. (2009) found 
that the first-generation of captive-bred and reared gup-
pies had smaller brains than wild individuals, and Fraser 
(2008) noted that re-introduced leopard frogs showed ab-
normal behaviors in the wild. It must be recognized that 
captive breeding, often with limited choices of mates and 
usually with small numbers of individuals, constrains or 
eliminates the possible beneficial effects of sexual se-
lection (Williams and Hoffman 2009). Captive rearing 
of larvae from the wild may avoid problems related to 
sexual selection, but nonetheless impose selective pres-
sures on the offspring. Because fisheries researchers have 
faced these problems for years, they have a good per-
spective based on the pitfalls of releasing captive-reared 
individuals into the wild. Studies from fisheries science 
have indicated that the quality or fitness of captive-reared 
individuals are not necessarily equivalent to those of wild 
individuals (e.g., Araki et al. 2007; Christie et al. 2012). 
Amphibian conservationists would be advised to review 
the references cited herein and create means of measur-
ing and assessing the biological quality of wild and cap-
tive tadpoles.

Within these contexts, we recognize the limitations of 
funding, the expectations of administrators, and the ex-
pertise of personnel sometimes can work against the suc-
cess of a given program. Stakeholders and participants 
in conservation programs may be pressured to, or evalu-
ated on, the release of as many individuals as possible, as 
soon as possible, with minimal cost. These realities can 
lead to the implementation of inordinate or biologically 
inappropriate actions that may not increase the chance 
of the timely release of more viable individuals. For ex-
ample, we have heard comments such as “I do not under-
stand. Some of them took off swimming across the pond 
and some of them got balled up in sand like they did not 
know what was going on.” In fact, reared individuals may 
not perform successfully at basic tasks like prey recogni-
tion or seeking refuge, but they can be given a chance 
to learn (i.e., pre-release training of Griffiths and Pava-
jeau 2008, or the “soft-release” concept as it is termed in 
some conservation programs). Other statements that we 
have overheard include “That skinny tadpole likes to lie 
on its side,” “I do not know why that tadpole swims in a 
spiral,” “These tadpoles constantly swim up and down 
the wall of the aquarium.” All of these cases describe 
tadpoles that either are sick, stressed, or otherwise un-
suitable for release, and examples of at least the first two 
cases should certainly be culled to improve the collective 
quality of the cohort (e.g., Nye and Cameron 2005).

We looked at two kinds of relevant information from 
the natural world to get a relative idea of what is faced in 
terms of the odds of survival in amphibian breeding. This 
perspective is crucial for evaluating captive programs, 
but seems to be poorly considered by practitioners. Some 
stakeholders we have observed seem to evaluate pro-
grammatic success by trying to maximize the number of 
metamorphic individuals that are released. Survival rates 
from egg to metamorphosis range from 0–20 % and are 
commonly 1–5 % (Wells 2007: table 14.5, fig 14.9). Sur-
vival from metamorphosis to first reproduction ranges 
from 6–26% (Herreid and Kinney 1966; Licht 1974). 
Greenberg and Tanner (2005) tracked the success of 23 
breeding events of Scaphiopus holbrookii at eight sites in 
Florida over nine years; five of these events were consid-
ered successful by producing a minimum of 100 meta-
morphs likely derived from > 107 eggs deposited on site. 
Semlitsch et al. (1996) reported only one reproductive 
event at one site that produced significant numbers of 
metamorphs of S. holbrookii over 16 years. High levels 
of mortality are typical of many amphibian reproduction 
efforts, and efforts of husbandry to avoid such mortality 
may not be desirable.

Survival and fitness are correlated with environmental 
conditions and diet. Dietary requirements of metamorphs 
may be easily underestimated. For example, a grand co-
hort of 7,000 (1,000 each of seven species) metamorphs 
can consume at least 2.3 × 106 insects the size of Dro-
sophila in the first post-metamorphic month (JRM and 
RA, unpubl. data). This number, about 2,250 g, will pro-
duce about 930 g of frog tissue (RA, unpubl. data). A 
frog needs about 20 cal/day/g body weight for mainte-
nance at 20 °C (Mazur 1968). At 5796.6 cal/g dry weight 
of fly tissue (Cummins and Wuycheck 1971), one can 
calculate that a frog could consume about 2.2–4.2 times 
the calories needed for maintenance during the first post-
metamorphic month. Also, it must be recognized that 
specific conditions at one point in the rearing process can 
influence the quality of an individual much later in on-
togeny (e.g., Scott et al. 2007; Gervasi and Foufopoulos 
2008; Gagliano and McCormick 2009; Uller et al. 2009; 
Van Allen et al. 2010) or perhaps more importantly, in 
subsequent generations (Frost et al. 2010). Because the 
behavioral, immunological, morphological, and physi-
ological qualities of reared individuals seldom are mea-
sured or evaluated in amphibian programs, there is little 
idea if techniques (e.g., diet) are producing individuals 
of good quality. There are many factors that modify vari-
ous qualities of metamorphs and postmetamorphs (e.g., 
Alford 1986; Blouin 1991, 1992; Gramapurohit et al. 
2004; Relyea and Auld 2005, and many others). In light 
of these data, the percentage of individuals produced are 
likely quite a poor estimator of success after release, and 
success should not be equated with the introduction of 
the largest possible number of tadpoles or metamorphs 
into the wild.
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The Natural World

We emphasize that not all aquatic larvae are adapted to 
similar aquatic environments. For example, phytotelmata 
are very different environments than are streams or ponds. 
Yet, the default rearing vessel for amphibians in captive 
programs is a stock, straight-walled aquarium. Focusing 
on the natural pond, for this example, let us consider this 
is an environment with a large surface area per volume 
for gas exchange and waste dispersion, wind and temper-
ature induce water movements, and populations of plants 
and animals dispense with metabolites. The sloping 
banks allow tadpoles to escape some predators and seek 
water of the desired temperatures during development, 
and those approaching metamorphosis can safely switch 
from gas exchange across the gills to the lungs. During 
their daily movements about the pond, tadpoles learn di-
rections to proper areas involving temperature, food, and 
refuge. The default enclosure with vertical walls and uni-
form depth violates all of these natural conditions, and 
the larvae have no exposure to differing microclimates, 
a natural light cycle, or the myriad ecological conditions 
that wild individuals encounter. Careful consideration of 
the egg deposition sites chosen by breeding frogs, and 
post-hatching behaviors of tadpoles should inform all 
aspects of the rearing enclosure, its placement, and envi-
ronment. We should consider whether it is even possible 
to raise high-quality frogs indoors, or tropical frogs in a 
typical Nearctic zoo?

With respect to the natural world, and returning to the 
idea of pre-release training (Griffiths and Pavajeau 2008), 
we suggest that survival after release would increase 
appreciably if the simple tenets of Y-axis orientation 
(Ferguson et al. 1965; Taylor and Ferguson 1969) were 
implemented. This type of orientation allows individuals 
to move about their habitat productively as they receive 
input visually or via the pineal complex (i.e., nonvisual, 
including the patterns of light polarization; Taylor and 
Adler 1970). An accurate sense of time is involved, and 
the biological clock must be reset each day by witness-
ing sunrise in order to stay synchronized with changes 
in day lengths. A fixed light-dark cycle in the laboratory 
does not entrain the animals in any way because there is 
no appropriate movement of the “sun” and no changes 
in day length. Naive tadpoles released without training 
may have a higher probability of being predated, and a 
released metamorph (i.e., small size with poor locomo-
tor skills, large surface-volume ratio and thus rapid water 
loss, likely with small energy reserves, and no idea of the 
locations of proper refuges) that makes one wrong direc-
tional choice has a high probability of dying.

We advocate that the adoption of the research proto-
col of Taylor and Ferguson (1969) into the release pro-
cedures would surely improve the success of the project. 
All that is needed to follow our pond-breeding example 
is: construct a meshed, wire cage with a top and bottom 
(about 100 × 50 × 30 cm placed with its long axis about 

a third on land and two-thirds in the water, place tadpoles 
or metamorphs in the water and include moist cover for 
froglets, and wait for at least two days). Tadpoles and 
froglets of stream-breeding species (Preininger et al. 
2012) obviously would also benefit from this procedure 
with some innovation of different meshed enclosures for 
stream species. The point is that, by experiencing even 
two sunrises, the animals will know the Y-axis, and when 
they are released, the animals can be expected to have 
a much better chance at survival because they are more 
likely to make the appropriate decisions.

The Culture World

We comment on several related topics that we feel are 
important; in all cases, stage refers to Gosner’s (1960) 
table. The various forms of egg clutches (Altig and Mc-
Diarmid 2007) may be quite fragile, but individual eggs 
are much more robust than one would assume. Clutches 
can be pulled or cut apart without damaging the ova to 
improve the surface area/volume of the groups. In the 
case of pond breeding species, eggs should be placed in 
water not much deeper than the groups of eggs. Different 
protocols are advisable, of course, for species that breed 
in substantially different environments (e.g, streams or 
phytotelmata). The natural history of the species and the 
specific conditions under which its larvae develop must 
be considered and incorporated into the rearing proto-
cols.

With respect to tadpoles, consider those of the Costa 
Rican Leaf Frog Agalychnis lemur that occur in very 
shallow, virtually non-moving swamps in nature; this 
must be considered when rearing this species in the 
lab. Many zoos and labs rely on stock aquaria, or simi-
larly shaped tanks, that often are poor choices for rear-
ing containers. They have a small surface area/volume, 
and this is a problem exacerbated by the tendency to put 
too many individuals in a given tank. If a caretaker la-
ments the management of air stones and water changes, 
then the system is incorrect by definition. Information 
on management of water quality are reviewed in Poole 
and Grow (2012) and Pessier and Mendelson (2010). 
Tadpoles that swim up and down the glass are signal-
ing that they are stressed by inappropriate temperatures, 
oxygen concentrations, or lack of naturalistic gradients 
of these crucial variables. Patterns of temperature varia-
tion can unpredictably influence developmental rate and 
morphology (Arrighi et al. 2013). Similarly, inappropri-
ate quantities of food or refugia, waste buildup, or popu-
lation density will also cause stress in tadpoles. As an 
example of our concept, consider a hypothetical pond-
breeding species. Shallow pans are not recommended. 
They have a reasonable surface area/volume, but their 
total volume is small and thus water chemistry is quickly 
overwhelmed by food and feces, and catastrophic water 
loss to evaporation is easy to miss. A plastic wading pool 
or some similarly shaped, shallow enclosure is the best 
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because of the large surface area/volume. Aeration is not 
needed and water changes will only be necessary 1–2 
times during the rearing of a batch of 300 tadpoles in a 
143-cm diameter pool. Water depth in these pools does 
not need to exceed 6–8 cm and usually 4 cm is sufficient 
for most pond-breeding species; it is the surface area that 
is important because deeper water does not increase the 
usable space for more tadpoles. Flow-through systems 
decrease the manual work involved but are probably the 
worst at providing the animals the chance to acquire the 
proper intestinal bacteria.

We contend that the fear of the chytrid fungus, other 
pathogens, and caretakers’ zeal for cleanliness has stimu-
lated keepers to create overly clean environments, and 
this action deprives the tadpoles of acquiring intestinal 
symbiosis (Pryor and Bjorndal 2005a,b). Coprophagy, 
especially after the material has developed large popu-
lations of microbes and protozoan, is a viable feeding 
tactic of tadpoles (Steinwascher 1978). Careful manage-
ment of diseases in captivity is based more on common-
sense husbandry protocols, rather than absolute steriliza-
tion (Pessier and Mendelson 2010). Proper work-flow 
regimes, dedicated equipment, and vigilant monitoring 
of water quality are recommended over routine water-
changes (in the absence of measurements to validate 
such) and bleaching of tanks and substrates.

Tadpoles and metamorphs have been fed many differ-
ent foods (e.g., Modzelewski and Culley 1974; Claussen 
and Layne 1983; Jörgensen 1989; Pryor 2003; Hailey et 
al. 2007; Pramuk and Gagliardo 2008; and many oth-
ers), but decisions and choices of foods do not appear 
to be based on data derived specifically from develop-
mental performances, size, or energetic reserves present 
at metamorphosis. Amphibians sequester most of their 
body fat in the fat bodies attached to the anterior ends 
of the kidneys. Assessing the size of the fat body (i.e., 
dissection of a few specimens, or perhaps development 
of techniques using sonography or electrical conductiv-
ity; Walsberg 1988) of individuals raised on different di-
ets would be a valuable endeavor. Part of the problem 
is that caretakers are just starting to distinguish between 
the consummatory and digestive diets of tadpole, with 
the real distinction being between what tadpoles ingest 
versus what they digest (Altig et al. 2007; Schiesari et al. 
2009; Whiles et al. 2009). How oral structures influence 
feeding performances (e.g., Venesky et al. 2010a,b) also 
remains to be determined. The main point is that tadpoles 
swallow large quantities of the products of primary pro-
ductivity (e.g., plants or algae), but when one considers 
periphyton, it is likely that these plants or algae may not 
represent the primary energetic intake (Altig et al. 2007). 
For example, one might consider adding a bit of clay 
soil to the rearing containers (Hailey et al. 2007; Akers 
et al. 2008). Adding supplements of natural foods, such 
as wild-collected aquatic plants or algae, is a viable idea, 
but one can inadvertently add vicious predators as well as 
potential pathogens and parasites. Algae can be allowed 

to develop in tanks, and there are protocols for clean-
ing plant materials before introduction to tanks (Pessier 
and Mendelson 2010); in either case, the important pe-
riphyton will develop. Tetramin® fish foods (TetraWerke, 
Melle, Germany), which contain considerable amounts 
of animal-based material, and powdered rabbit pellets 
have been used successfully by the authors, but there are 
no data on actual developmental performances. There are 
now many recipes for tadpole diets applied to a number 
of different programs for ranids (Abrahamse and Hayes 
2009) and other taxa. These kinds of feed promote rapid 
production of microorganisms which likely serve as the 
primary food source for tadpoles. The point to keep in 
mind is that the knowledge-base for tadpole diets in the 
wild and nutritional needs is poor and far from taxonomi-
cally complete. Basic research in the form of controlled 
studies is necessary for virtually all species.

If the program is designed to release post-metamor-
phic individuals and rearing conditions have been suit-
able, then the majority of tadpoles will reach metamor-
phic stages 41–42 (i.e., eruption of front legs) at nearly 
the same time (Wells 2007). If a large proportion (e.g., 
75–90 %) of the tadpoles do not metamorphose over a 
short period of time, then one may assume an excessive 
population density or some other factor has impeded nor-
mal growth. Metamorphs should be held until tail resorp-
tion is complete because tailed individuals have reduced 
locomotor abilities. If post-metamorphic frogs are to be 
maintained in captivity, then abundant and diverse small 
prey must be available. A single-species diet of fruit flies 
alone does not match the diversity of nutrients available 
to free-ranging froglets.

Release of Reared Individuals

After considering the release options outlined above, the 
release of tadpoles and froglets should be coordinated 
with when metamorphosis of the target species occurs at 
the release locality. This detail will increase the chances 
of there being proper weather conditions and sufficient 
food available, and one might consider verifying the lo-
cal prey base (Goldstein 2007). Iterative assessments, via 
monitoring, and appropriate modifications of the release 
environment may be required. In the real context of the 
interactions of biotic and abiotic conditions, local popu-
lations increase and decrease through time. Populations 
in “good localities” (sources) persist for long periods, 
and populations in sites of some unknown lesser condi-
tions (sinks) appear and disappear abruptly on short time 
scales. If a population did not succeed at the target site 
under the natural conditions, one should question the log-
ic of a restoration attempt at that site; at least we should 
understand the reasons for its original failure. Also, the 
concept of source-versus-sink populations presents a dif-
ficult decision if one wishes to establish a population at 
an entirely new site (e.g., Pellitteri-Rosa et al. 2008; Mc-
Murry et al. 2009; Ruiz et al. 2010). In any case, popu-
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lations at sink-sites may sometimes represent important, 
if ephemeral, connectivity across the meta-population 
landscape. It is quite unlikely that any two adjacent pools 
present the same conditions, and in such a case, one must 
set aside human notions and conveniences, know the bi-
ology of the target species very well, evaluate the new 
site in detail, and diversify as much as is feasible with 
the number of individuals available. Various factors that 
change as a site undergoes succession can also change 
the likelihood of a given site being a viable site for rein-
troduction. Also, released individuals likely perform dif-
ferently relative to other local taxa (Tingley et al. 2011).

Although there can be repercussions in doing so, one 
might consider reducing the chance of predation. Snakes 
can decimate tadpoles and froglets, but predatory fishes 
usually are not a problem in ephemeral sites, streams, or 
other types of sites where many frogs breed. Examples 
of the types of things to be considered for pond sites in-
clude comparisons of sites with no aquatic vegetation or 
short, sparse vegetation; stands of tall vegetation (e.g., 
especially cattails), zones covered by water lilies, and 
dense stands of emergent vegetation are not acceptable. 
These vegetation structures provide excessive organic 
debris that can reduce oxygen concentrations and exces-
sive shade that inhibits proper periphyton growth. Dense 
stands of filamentous algae and algal mats are not ac-
ceptable because these populations reduce the oxygen 
concentration and some of these organisms are toxic. All 
manners of emergent, submergent, and floating vegeta-
tion must be considered with direct respect to the antici-
pated micro-habitat use of the released species.

One should also consider the qualities of adjacent 
terrestrial areas. High densities of froglets can occur at 
release sites, so additional refuges ought to be provided 
if one suspects that refugia could possibly be a limited 
resource. Artificial refugia made from PVC pipe (nar-
row gauge; cap on the bottom and a T-cap at the top; 
small drain hole about two cm from bottom to avoid fill-
ing with water; painted black) placed upright in the local 
environment will be used by post-metamorphic treefrogs 
(RA, unpubl. data). Pushing a rod into soft soil at a low 
angle and removing it leaves preliminary burrows for 
toads and ranid frogs, and pieces of PVC pipe laid on the 
ground and covered with soil to avoid overheating pro-
vides similar burrows. At the same time, this technique 
is subject to invasion by introduced fire ants (Solenopsis 
invicta) in southeastern North America; the ants use the 
tubes to help establish a mound and consume any frog-
lets that may enter. Untreated wooden cover boards also 
can be quite useful as retreats if there is enough local 
moisture.

As an alternative to rearing tadpoles in pools in the 
laboratory, and the various concerns raised here above, 
it may be preferable to simply transfer eggs to the new 
site. Breaking a clutch into smaller pieces to enhance 
aeration would be prudent because the eggs likely are not 
placed in the same manner (e.g., attached to a twig off 

the bottom) as was done by the ovipositing frogs. Protec-
tion from egg predators (e.g., mesh enclosures) would be 
advisable. Egg transfers between already inhabited sites 
can facilitate genetic connectivity between sites, if that 
is what the management plan recommends. The program 
should not reduce genetic diversity. Reintroduction to a 
new or extirpated site may need multiple releases, not 
only for establishment, but for genetic management (e.g., 
if only F1’s from captive adults were released, and there 
is no connectivity to other populations, there would be 
inbreeding depression, genetic drift, etc.). Long-term ge-
netic maintenance should be considered when deciding 
where and how often animals are released.

Conclusions

The study of amphibian declines is difficult, and the 
search for solutions is frustrating (e.g., Beilby et al. 
2009). When release programs either succeed or fail, we 
often are never sure of the reasons why in either case, and 
volumes of anecdotal information are produced. Knowl-
edge of the genetic diversity of the populations that are 
released (e.g., Charmantier and Garant 2005) is crucial, 
and throughout our rearing attempts, we must be certain 
that caretakers are not perpetuating any initial problems 
(e.g., Walker et al. 2008). We understand that some of the 
points we have raised may violate restrictions of funds, 
personnel, facilities, and time. But, we suggest that the 
bar should be raised at every available chance. If imple-
mented at the design-phase of a conservation project, our 
recommendations require fewer resources than traditional 
programs so long as the crucial component of long-term 
post-release monitoring is equivalent. More field data on 
the biology of the species involved are needed, and many 
of the practical or financial limitations can be overcome 
by rather minor changes in techniques based on better 
knowledge of species biology. No protocol will ever ap-
proach total success, especially when details of why the 
targets met their demise in the first place. Some research-
ers who have made multiyear releases of head-started 
frogs at a site, but have not yet started routine monitoring 
seem uninformed. Perhaps the biggest idea in this discus-
sion is that it must be remembered that imposing non-
natural conditions (Gawor et al. 2012) on tadpoles and 
froglets by the seemingly simple act of culturing these 
organisms (Denver and Middlemis-Maher 2010) should 
underscore all aspects of the design and evaluation of a 
conservation program. The quality of the released indi-
viduals, the release protocol, and post-release monitor-
ing are the most important factors to reconsider in any 
amphibian reintroduction or relocation program.
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